Equations and PFTs for soil thermal properties in LSMs:
Implications for the energy balance

Anne Verhoef, Jirka Simunek, Lutz Weihermuller, Michael Herbst, Kris Van Looy, Carsten Montzka, Harry Vereecken, plus LSM collaborators

LSM collaborators

CABLE: Mark Decker
Catchment: Randy Koster, Gabriëlle De Lannoy (& Joe Santanello)
CLM: David Lawrence
JSBACH: Stefan Hagemann, inputs from Christian Beer and Philip de Vrese
JULES: Anne Verhoef (inputs from Imtiaz Dharssi, Toby Marthews, Pier Luigi Vidale, Heather Ashton & John Edwards)
MPI-HM: Tobias Stacke
NOAH-(MP): Yihua Wu and Michel Ek
OLAM: Robert Walko
ORCHIDEE: Agnès Ducharne and Fuxing Wang
SSiB: Yongkang Xue, Qian Li
SURFEX-ISBA: Aaron Boone and Sebastien Garrigues
OVERVIEW

• Joint ISMC and GEWEX communities: Initiatives to improve soil and subsurface processes in current climate and hydrological models.

• Evaluation of pedotransfer functions and related functional descriptions for calculation of hydraulic and thermal soil properties in global climate models.
THERMAL CONDUCTIVITY, λ

- Soil thermal conductivity depends on dry, λ_{dry}, and saturated conductivity, λ_{sat}, in combination with a soil moisture dependent weighting function, F_θ
- Equations are required to estimate λ_{dry}, λ_{sat} and F_θ
- These parameters, and their intrinsic parameters all require ‘thermal’ PFTs

Most LSM models use:

$$\lambda = F_\theta \lambda_{sat} + (1 - F_\theta) \lambda_{dry}$$

Weighting function

One uses:

$$\lambda = \lambda_0 + \lambda_1 F_\theta + \lambda_2 (F_\theta)^2$$

ISMZ conference/workshop on the future of PedoTransfer Functions, New Orleans 10 December 2017
WEIGHTING FUNCTION, F_θ

- The weighting function, F_θ, is often the Kersten number, K_e, which is dependent on the relative saturation, S_e.
- Constant γ varies between models.
- S_e depends on moisture content, θ, and saturated moisture content, θ_{sat}, and residual SMC, θ_r (for VG).

Most LSMS: $F_\theta = \text{Kersten number, } K_e$

$$K_e = \gamma \log(S_e) + 1$$

$$F_\theta = S_e \text{ for 2 others}$$

where γ is generally one, but for some models is set to 0.7 for coarse soils.

Others use $\gamma = 0.7$ for $0.05 < S_e \leq 0.1$.

Clapp & Hornberger/Brooks & Corey

$$S_e = \frac{\theta}{\theta_{sat}}$$

Van Genuchten, VG

$$S_e = \frac{\theta - \theta_r}{\theta_{sat} - \theta_r}$$
Dry Thermal Conductivity, λ_{dry}

- Generally dependent on (some of) the soil texture fractions (sand, silt, clay), either explicitly or implicitly (via soil class look-up tables, LUTs).

- Porosity, θ_{sat}, is an important parameter, and depends on hydraulic PFTs (in blue).

Alternatively

$$\lambda_{dry, min} = 0.19$$

Most LSMs use Johansen (1975), as also used by Peters-Lidard et al. (1998)

$$\lambda_{dry, min} = \frac{0.135 \rho_{min} + 64.7}{\rho_{min} - 0.947 \rho_{b,min}}$$

One uses (Cox et al., 1999)

$$\lambda_{dry, min} = \lambda_{air} \theta_{sat} X_{cl} X_{sa} X_{si}$$

$$X_j = C_j f_j (1 - \theta_{sat})$$

C_j is a constant (1.16 for clay, 1.57 for silt and sand), and f_j is the fraction of $j = \text{clay, silt, or sand}$

Or Lu et al., 2007

$$\lambda_{dry, min} = -0.56 \theta_{sat} + 0.51$$

THERMAL PROPERTIES THEORY

ISMCF Conference/Workshop on the Future of PedoTransfer Functions, New Orleans 10 December 2017
Saturated Thermal Conductivity, λ_{sat}

- The saturated thermal conductivity generally depends on the thermal conductivities of the solid soil material, λ_{soil}, liquid soil water, λ_{liq}, and ice, λ_{ice}, sometimes on λ_{air}.

Most LSMs use (from Johansen, 1975?):

$$\lambda_{sat} = \lambda_{soil}^{1-\theta_{sat}} \lambda_{ice}^{\theta_{sat}} \lambda_{liq}^{\theta_u} \lambda_{air}^{\theta_{sat}}$$

Soil solid conductivity (see next slide)

One uses

$$\lambda_{sat} = \lambda_{dry}^{\theta_{sat}} (\lambda_{liq}^{\theta_{sat}} \lambda_{ice}^{f_{sat}}) / \lambda_{air}^{\theta_{sat}}$$

Or

$$\lambda_{sat} = \begin{cases}
1.58 & \lambda_{dry} < 0.25 \\
1.58 + 12.4(\lambda_{dry} - 0.25) & 0.25 < \lambda_{dry} < 0.3 \\
2.2 & \lambda_{dry} > 0.3
\end{cases}$$
SOIL SOLID THERMAL CONDUCTIVITY, λ_{soil}

- The saturated thermal conductivity generally depends on the thermal conductivities of the solid soil material, λ_{soil}, liquid soil water, λ_{liq}, and ice, λ_{ice}, sometimes of λ_{air}.

In a number of LSMs, λ_{soil} is assumed to be dependent only on the thermal conductivity of the mineral soil solids as given by (Johansen, 1975):

$$\lambda_{soil} = \lambda_{qu} f_{qu} \lambda_{o}^{1-f_{qu}}$$

Some use:

$$\lambda_{soil} = \frac{\lambda_{qu} f_{sand} + \lambda_{clay} f_{clay}}{f_{sand} + f_{clay}}$$

$f_{qu} = 0.038 + 0.0095 f_{SA}$

λ_{qu} the thermal conductivity of quartz, having a value of 8.8 or 7 W m$^{-1}$ K$^{-1}$

λ_{o} is the thermal conductivity of other minerals, generally set to 2 or 3 W m$^{-1}$ K$^{-1}$
SOIL HEAT CAPACITY, C_h

• Theory (e.g. Van Wijk & de Vries, 1963) states soil heat capacity depends on the specific heat capacities (c_i) of the solid soil material, liquid soil, water, ice, and air, their densities (ρ_i) and volume fractions (ϕ_i).

• Alternatively we can use the volumetric heat capacity

• Some models use a constant $C_h (= 2.19 \times 10^6$; independent of soil type), i.e. its values remain unchanged despite changes in θ, whereas others uses values ranging between 1.93×10^6 for sand to 2.48×10^6, for clay.

\[
C_h = \phi_{min}\rho_{min}c_{min} + \phi_{org}\rho_{org}c_{org} + \phi_{liq}\rho_{liq}c_{liq} + \phi_{ice}\rho_{ice}c_{ice} + \phi_{air}\rho_{air}c_{air}
\]

\[
C_h = \phi_{min}c_{min} + \phi_{org}c_{org} + \phi_{liq}c_{liq} + \phi_{ice}c_{ice} + \phi_{air}c_{air}
\]

\[
\phi_{min} = (1 - \theta_{sat}) \quad \phi_{liq} = \theta \quad \phi_{min} + \phi_{org} + \phi_{liq} + \phi_{ice} + \phi_{air} = 1.0
\]
CALCULATION OF MINERAL HEAT CAPACITY, \(c_{min} \) OR \(C_{min} \)

- The main PTF for heat capacity relates to the way \(c_{min} \) or \(C_{min} \) is calculated. There are a number of options used in the LSMs:
 - (i) Employ the same value for all soil types
 - (ii) Use different values (tabulated) for each soil class,
 - (iii) Use different values per soil class, calculated as a function of texture:

(i) One uses \(C_{min} = 1.942 \times 10^6 \) (Johansen, 1975), as one of its options. Others use \(C_{min} = 2.0 \times 10^6 \); \(c_{min} = 850 \text{ J kg}^{-1} \text{ K}^{-1} \), or \(c_{min} = 733 \text{ J kg}^{-1} \text{ K}^{-1} \)

(ii) Two LSMs use the same values for \(C_{min} = \rho_{min} c_{min} \) for 11 USDA soil type as given in Pielke (2002) based on McCumber (1980), see also McCumber and Pielke (1981)

(iii) A range of PTFs can be found, e.g.:

\[
\begin{align*}
C_{min} &= (f_{\text{sand}} C_{\text{sand}} + f_{\text{clay}} C_{\text{clay}})/(f_{\text{sand}} + f_{\text{clay}}) \\
C_{min} &= f_{\text{clay}} C_{\text{clay}} + f_{\text{sand}} C_{\text{sand}} + f_{\text{silt}} C_{\text{silt}}
\end{align*}
\]
RESULTS: Thermal Conductivity

- Per soil type: large difference in λ between models
- Considerably different functional shapes between models

RESULTS, thermal conductivity

- Sand
- Loam
- Clay

ISM C conference/workshop on the future of PedoTransfer Functions, New Orleans 10 December 2017
RESULTS, HEAT CAPACITY

- Per soil type: considerable difference in C_h between models
- In some cases, different slopes between models
Model runs, using model-specific thermal (& hydraulic) properties

- Runs with Hydrus 1-D for 14 years (2001-2014) of half-hourly data from Avignon, model outputs are hourly
- 2 LSMs are compared in the next slides
- Bare soil, soil profile of 50 cm, no vapour flow, free drainage
- Sand, Loam, clay
- LSM thermal equations have been implemented into Hydrus-1D
- Effects on energy- and water balance have been investigated
- Effect on soil (surface) temperature and soil moisture content
Net radiation, Sand, multi-year diurnal monthly average

- Time (hours)
- Net radiation (W m$^{-2}$)

- July
- August
- September
- October
- November
- December

OLAM_VG

Comparision using HYDRUS Model
Evaporation, Sand, multi-year diurnal monthly average

- July
- August
- September
- October
- November
- December

Latent heat flux (W m\(^{-2}\))

Time (hours)
Sensible heat flux, sand, multi-year diurnal monthly average

- Sensible heat flux (W m\(^{-2}\))
- Time (hours)

July
August
September
October
November
December

Tessel
OLAM_VG
Soil heat flux, sand, multi-year diurnal monthly average

Time (hours)

Surface Soil heat flux (W m$^{-2}$)

-200 -100 0 100 200

July
August
September
October
November
December

Tessel
OLAM_VG

Soil heat flux, sand, multi-year diurnal monthly average using HYDRUS MODEL.
Surface temperature, sand, multi-year diurnal monthly average
Surface SMC, sand, multi-year diurnal monthly average

- July
- August
- September
- October
- November
- December

Surface Moisture content

Time (hours)
Below: exact same hydraulic functions, but two different thermal functions, (solid line LSM 1, dashed line LSM 2)
Small effect on EB fluxes and T_s, but considerable effect on deeper soil temperatures

Causes differences values, amplitudes and phase-shifts: implications for soil freezing and permafrost applications
CONCLUSIONS

• Very different shapes for $\lambda(\theta)$ curve, and considerable differences in $C_h(\theta)$, between LSM models

• Some LSM models have errors in their basic equations; some model teams have now corrected these

• PTFs for parameters in these thermal property functions vary considerably between models.

• They include a hydraulic PFT for porosity

• PFTs depend on soil texture and porosity/dry bulk density, as well as quartz content
CONCLUSIONS, c’ed

• The combined effect of the choice of thermal and hydraulic equations on the energy and water balance is large.

• When only the thermal properties differ, the main effect is on deeper soil temperatures.

• This has implications for modelling of permafrost regions or soil respiration, for example.
Next steps

- Assess influence for vegetated surfaces (reduced)
- Use measured thermal properties to test validity of models
- Select preferred and/or adjust equations/PTFs
- Make recommendations to LS and Hydrological modellers